深圳商报·读创客户端记者 张郗郡
10月8日与9日,2024年诺贝尔物理奖与化学奖陆续公布。
今年,诺贝尔物理学奖颁发给了约翰·霍普菲尔德(John J. Hopfield)与“人工智能之父”、2018年图灵奖得主杰弗里·辛顿(Geoffrey E. Hinton),以表彰他们使用人工神经网络实现机器学习的基础发现和发明。化学奖则颁发给三位科学家,其中一半授予戴维·贝克(David Baker),以表彰其在计算蛋白质设计方面的贡献,另一半共同授予来自谷歌旗下人工智能公司DeepMind的德米斯·哈萨比斯(Demis Hassabis)和约翰·江珀(John M. Jumper),以表彰其在蛋白质结构预测方面的贡献。
显然,今年的两个奖项都没有颁发给传统意义上的物理学家与化学家,而是对AI显示出更多青睐。但这也引发了不少学者的担忧:诺贝尔奖是否正在“抛弃”物理与化学理论研究? AI是否威胁到了传统物理与化学学科的发展?
在一些专家看来,当诺奖进入“AI时代”,这一学术风向标的转变或许促使我们开始思考,在AI大行其道的今天,学科交叉才是科研发展的终极奥义。
物理学奖“跨界”引争议
10月8日,当2024诺贝尔物理学奖的获奖名单公布,约翰·霍普菲尔德与杰弗里·辛顿,两位以人工神经网络研究闻名的计算机科学家获得了物理学的荣誉。
据诺贝尔奖官方,两位获奖者从上世纪80年代开始就人工神经网络进行了重要研究,利用物理学的工具开发了机器学习的基础方法。约翰·霍普菲尔德在1982年提出“霍普菲尔德网络”模型,利用物理学中原子自旋和相互作用的原理,让机器可以模拟人脑进行回忆与联想;杰弗里·辛顿则将霍普菲尔德网络的想法应用于发展“玻尔兹曼机”,玻尔兹曼机可以学习给定数据类型的特征元素,以用来分类图像或创建新材料。这项工作后来被运用到深度学习领域,为当前机器学习的爆炸性发展奠定了有力基础。
两位科学家均凭借对机器学习的奠基性研究而获此殊荣,尽管如“霍普菲尔德网络”这样的模型如今已不再使用,但他们在基础原理上的贡献仍值得如今的人们致敬。《财经》杂志此前也指出,两位获奖者通过物理学的视角,为机器学习提供了新的理论基础。从这种角度来说,他们的贡献绝不仅仅是对某一领域的技术突破,而是在学科交叉点上的深刻洞察。
AI公司DeepMind“狂刷”存在感
10月9日公布的诺贝尔化学奖悉数聚焦在了蛋白质的结构上。蛋白质可以被视为生命的基石,通常由20种不同的氨基酸由无数种方式组合而成。但蛋白质是一个三维的立体结构,其构成的不同影响着作用的不同。如此一来,如何通过一维的氨基酸序列推断出蛋白质的三维结构,就成为了困扰化学家们50多年来的大问题。
2024澳门天天开好彩大全杀码,重要性解释落实方法_钻石版5.781
图释:一个蛋白质可以由几十个氨基酸到几千个氨基酸组成新澳精选资料免费提供 ,时代资料解释落实_探索版7.422。氨基酸链折叠成一个三维结构,这个结构对于蛋白质的功能是决定性的。
管家婆最准一肖一特 ,确保成语解释落实的问题_优选版0.692
此前,这类预测需要通过蛋白质结晶的实验来完成,但实验不仅耗费高昂,还需要数月、甚至几年的时间。而本次获奖者中,哈萨比斯、江珀两人领导的DeepMind公司推出的AlphaFold模型利用机器的自主学习,大大提高了预测效率。
2018年,DeepMind正式推出AlphaFold 1模型,并在第13届“蛋白质结构预测奥运会”CASP比赛中,以接近 60%的准确率获得冠军;2020年,哈萨比斯和江珀提出了AlphaFold2模型,该模型能够在广泛领域进行蛋白质结构的预测,并且已预测出研究人员发现的几乎所有2亿种蛋白质的结构;今年5月,DeepMind和Isomorphic Labs 研究团队推出了AlphaFold 3,同时登上《Nature》。据介绍,与现有的预测方法相比,AlphaFold 3 发现蛋白质与其他分子类型的相互作用至少提高了50%,对于一些重要的相互作用类别,预测准确率甚至提高了一倍。
在此之前,DeepMind就因旗下AlphaGo击败围棋高手李世石而备受关注。从游戏转变到生物领域,DeepMind在AI方面持续发力,在今年的诺贝尔奖中也“狂刷”了一波存在感。未来,哈萨比斯透露,AlphaFold 3将应用到医药领域中,利用细胞模拟等技术加速癌症、免疫性疾病的药物研发。
学科交叉成未来主流
从计算机科学获得物理学奖,到AI技术获得化学奖,今年诺贝尔奖的结果无一不彰显着“AI for Science”的重要性。2024新澳精准资料免费提供 ,时代资料解释落实_探索版7.422
9月28日,2000年图灵奖获得者、中国科学院院士、清华大学教授姚期智在腾讯联合南方科技大学举办的2024年青年科学家50²论坛上,就提到了利用AlphaFold对蛋白质折叠的三维结构进行预测的案例。他表示,目前人工智能最明显的趋势呈现两方面:一是从弱智能走向通用智能,二是以“AI+X”为主的交叉学科赋能。
姚期智在青年科学家50²论坛上
如今,AI正为千行百业赋能,“AI+量子”“AI+仿生”等多个人工智能与新兴学科的交叉研究领域均有进展,如利用AI首次实现拓扑时间晶体,具身机器人拥有自主学习能力等等。“目前,生物科技、医疗健康、新材料等都在积极引进人工智能技术,以寻求颠覆性的科技创新,也见到了一些突破性的结果。”姚期智说。
此前,2018年诺贝尔化学奖得主、加州理工学院化学工程教授阿诺德 (Frances Arnold)也在一次演讲中表示:“AI正在改变我们进行科学研究的方式,它增强了我们探索以前难以解决的问题的能力。”联系诺奖的结果看来,作为工具的AI将继续深入地影响更多自然科学领域的研究,学科交叉研究与复合型人才也成为未来的主流。
“这(结果)不仅意味着诺贝尔奖官方对当前科学前沿领域的紧密关注,也预示着AI的发展正从关键的突破期进入对社会具有更广泛影响的新阶段,它不能不被传统社会的目光所注意,也必将被大众所接纳。”知名数字经济学者刘兴亮对此撰文表示。